Package: inlamemi 1.1.0

inlamemi: Missing Data and Measurement Error Modelling in INLA

Facilitates fitting measurement error and missing data imputation models using integrated nested Laplace approximations, according to the method described in Skarstein, Martino and Muff (2023) <doi:10.1002/bimj.202300078>. See Skarstein and Muff (2024) <doi:10.48550/arXiv.2406.08172> for details on using the package.

Authors:Emma Skarstein [cre, aut, cph], Stefanie Muff [aut]

inlamemi_1.1.0.tar.gz
inlamemi_1.1.0.zip(r-4.5)inlamemi_1.1.0.zip(r-4.4)inlamemi_1.1.0.zip(r-4.3)
inlamemi_1.1.0.tgz(r-4.5-any)inlamemi_1.1.0.tgz(r-4.4-any)inlamemi_1.1.0.tgz(r-4.3-any)
inlamemi_1.1.0.tar.gz(r-4.5-noble)inlamemi_1.1.0.tar.gz(r-4.4-noble)
inlamemi_1.1.0.tgz(r-4.4-emscripten)inlamemi_1.1.0.tgz(r-4.3-emscripten)
inlamemi.pdf |inlamemi.html
inlamemi/json (API)
NEWS

# Install 'inlamemi' in R:
install.packages('inlamemi', repos = c('https://emmaskarstein.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/emmaskarstein/inlamemi/issues

Pkgdown site:https://emmaskarstein.github.io

Datasets:
  • framingham - Framingham heart study data
  • mar_data - Simulated data with observation missing at random
  • nhanes_survival - Survival data with repeated systolic blood pressure measurements
  • simple_data - Simple simulated data
  • two_error_data - Simulated data with two covariates with classical measurement error

On CRAN:

Conda:

5.97 score 19 scripts 487 downloads 12 exports 31 dependencies

Last updated 5 months agofrom:018be39fbf. Checks:4 OK, 3 NOTE, 2 ERROR. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 06 2025
R-4.5-winNOTEMar 06 2025
R-4.5-macERRORMar 06 2025
R-4.5-linuxNOTEMar 06 2025
R-4.4-winOKMar 06 2025
R-4.4-macOKMar 06 2025
R-4.4-linuxOKMar 06 2025
R-4.3-winNOTEMar 06 2025
R-4.3-macERRORMar 06 2025

Exports:extract_variables_from_formulafit_inlamemiget_coef_impget_coef_misget_coef_moiget_imputedmake_inlamemi_control.familymake_inlamemi_familiesmake_inlamemi_formulamake_inlamemi_scaling_vectormake_inlamemi_stacksshow_data_structure

Dependencies:clicolorspacedplyrfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbletidyselectutf8vctrsviridisLitewithr

How are the models structured?

Rendered fromVisualize_model_structure.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2024-07-05
Started: 2024-03-06

How to avoid using inlamemi

Rendered frombuilding_models_without_inlamemi.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2024-10-31
Started: 2024-07-05

Influence of systolic blood pressure on coronary heart disease

Rendered fromFramingham_heart_study.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2024-10-31
Started: 2024-03-06

Modifying the default plot

Rendered frommodifying_default_plot.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2024-10-31
Started: 2024-05-31

Multiple variables with measurement error and missingness

Rendered frommultiple_error_variables.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2024-10-31
Started: 2024-03-06

Simulated examples

Rendered fromsimulated_examples.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2024-10-31
Started: 2024-03-06

Survival model with repeated systolic blood pressure measurements

Rendered fromnhanes_survival_model.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2024-10-31
Started: 2024-07-05